Tuesday, December 3, 2013

5 Inspiring Features of Latest 4G Tablets

Introduction of 4GMobile technologies are climbing the stairs of success continuously from last few years, particularly in the field of mobile internet.Mobile internet users are always in need of faster speed for access their requirements.At same time,mobile internetproviders were trying to sort out this problem. But they failed to increase their speed on long range wireless networks. To overcome on the demand of users, it is the time to launch fourth-generation wireless system, known as 4G technology. These are the 5 inspiring features of latest 4G tablets, given below;
4G2
1.     Outstanding & Matchless SpeedVarious ranges of internet users give preference to a specific IPS instead of existing because it provides much better speed. Few years back, people used low and irritating speed internet connections, after that internet grow their speed with passing every single day and then 3G technology comes. There are numerous ranges of users who like to use 3G internet technology. But now,it is the time to get familiar with 4G mobile internet technology and it provides you 10 times higher speed than 3G technology. If your requirement is only speed while using internet, then you must have 4G mobile internet technology.

2.     Fast Growing TechnologyToday, 4G mobile internet technology is one of the most fast growing technologies with excellent around the world.When Verizon launched this 4G technology, they make its network available in 30 locations but now gradually its network is accessible more than 105 locations within few months. This growth is showing that how much 4G technology is expanding its network and improving its status day by day. So, we can expect more developments in growth of 4G mobile internet technology and we could set an idea that its future is bright.

3.     Latest Security Expertise
While using Ethernet and many other wireless network connections, they have low security principles. This kind of weakness in security, it directly effects and disturbed to internet speed.So now, there is no place for worries while you have 4G mobile internet connection or network. 4G covered up with all unsecure concerns of networks and also its security provides new features to its users. Therefore, just feel tension free from security issues if you are using 4G internet technology for security purpose because it offers you more reliability during work.

4.     Weatherproof Work EfficiencyOne of the most valuable features in 4G mobile internet technology is weatherproof work efficiency. Any kind of weather cannot effectand disturb its working efficiency. This feature makes it more reliable and also effective to catch the attraction of mobile internet users.

5.     Flexible Access FacilityThe flexible access facility is the one of smarter feature, which is installed 4G internet technology. There are no more restrictions about accessing and it capable to remain its speed constant while you are changing your places in small area. So enjoy 4G internet technology with using broadly.

GPRS Tunneling Protocol (GTP) in LTE

GPRS Tunneling Protocol (GTP) in LTE

Introduction

GPRS Tunneling protocol is an important IP/UDP based protocol used in GSM, UMTS and LTE core networks. It is used to encapsulate user data when passing through core network and also carries bearer specific signalling traffic between various core network entities. This protocol has several advantages which will be discussed later.


GPRS Tunneling Protocol Types



Why is GTP used in LTE?

  • It provides mobility. When UE is mobile, the IP address remains same and packets are still forwarded since tunneling is provided between PGW and eNB via SGW 
  • Multiple tunnels (bearers) can be used by same UE to obtain different network QoS
  • Main IP remains hidden so it provides security as well
  • Creation, deletion and modification of tunnels in case of GTP-C

GTP Interfaces in LTE

In LTE, version 2 is used for GTP-C and version 1 is used for GTP-U
In simple LTE network implementation, GTP-v2 is used on S5 and S11 interfaces and GTPv1 is used on S1-U, S5, X2-U interfaces (as shown below). In inter-RAT and inter PLMN connectivity, S3, S4, S8, S10, S12 and S16 interfaces also utilize GTP protocols

How GTP-U Works ?

GTP-U encapsulation of UE user plane traffic can be easily understood by taking any simple example. Lets see what happens when IP packet generated by UE reaches to eNodeB and is then forwarded to SGW.

Consider any application on UE creates an IP/TCP packet. This packet consist of actual data by application, TCP or UDP header and then IP field information which has source address of UE and destination address of application server (e.g. Facebook)

When the eNodeB receives this packet over air interface, it will put the IP packet inside GTP header which has information related to tunnel IDs. Then further, it is encapsulated inside UDP and IP header and forwarded as ethernet frame towards SGW. Here the IP header contains eNodeB IP as a source address and SGW IP as a destination address

GTP-C signalling messages

As GTP-Cv2 in LTE is used for tunnel management, some of the signalling messages are listed below which use GTP-Cv2 protocol 



Please check Table 6.1-1(3GPP TS 29.274) for more detailed list of GTP-C based messages.

Transport Block Size and Code rate

Transport Block Size and Code rate

Since the size of transport block is not fixed, often a question comes to mind as to how transport block size is calculated in LTE.

Back Ground
If we only consider "Uplink direction" and we assume that the UE is already attached to the network, then data is first received by PDCP (Packet data compression protocol) layer. This layer performs compression and ciphering / integrity if applicable. This layer will pass on the data to the next layer i.e. RLC Layer which will concatenate it to one RLC PDU.

RLC layer will concatenate or segment the data coming from PDCP layer into correct block size and forward it to the MAC layer with its own header. Now MAC layer selects the modulation and coding scheme configures the physical layer. The data is now in the shape of transport block size and needed to be transmitted in 1ms subframe.






Transport Block size

Now how much bits are transferred in this 1ms transport block size? 
It depends on the MCS (modulation and coding scheme) and the number of resource blocks assigned to the UE. We have to refer to the Table 7.1.7.1-1 and Table 7.1.7.2.1-1 from 3GPP 36.213

Lets assume that eNB assigns MCS index 20 and 2 resource blocks (RBs) on the basis of CQI and other information for downlink transmission on PDSCH. Now the value of TBS index is 18 as seen in Table 7.1.7.1-1


After knowing the value of TBS index we need to refer to the Table 7.1.7.2.1-1 to find the accurate size of transport block (Only portion of the table is shown here while for the complete range of values refer to 3gpp document 36.213 http://www.quintillion.co.jp/3GPP/Specs/36213-920.pdf)




Now from the Table 7.1.7.2.1-1 the value of Transport block size is 776 bits for ITBS = 18 and NPRB=2

Code Rate

In simple words, code rate can be defined as how effectively data can be transmitted in 1ms transport block or in other words, it is the ratio of actual amount of bits transmitted to the maximum amount of bits that could be transmitted in one transport block

code rate = (TBS + CRC) / (RE x Bits per RE)

where
TBS = Transport block size as we calculated from Table 7.1.7.2.1-1
CRC = Cyclic redundancy check i.e. Number of bits appended for error detection
RE = Resource elements assigned to PDSCH or PUSCH
Bits per RE = Modulation scheme used


While we know the values of TBS, CRC and bits per RE (modulation order), it is not easy to calculate the exact amount of RE used for PDSCH or PUSCH since some of the REs are also used by control channels like PDCCH, PHICH etc

In our case, lets assume that 10% of RE's are assigned for control channels then

TBS = 776
CRC = 24
RE = 2 (RB) x 12 (subcarriers) x 7 (assuming 7 ofdm symbols) x 2 (slots per subframe) x 0.9 (10% assumption as above) = 302 REs
Bits per RE = 6 (Modulation order from table 7.1.7.1-1)

So

code rate = (776 + 24) / (302 * 6 ) = 0.4

Quality of Service (QoS) in LTE


Quality of Service (QoS) in LTE

Background: Why we need QoS ? 

There are premium subscribers who always want to have better user experience on their 4G LTE device. These users are willing to pay more for high bandwidth and better network access on their devices. Not only the subscribers but some services itself need better priority handling in the network (e.g. VoIP call). To be able to full fill this, QOS plays the key role. QOS defines priorities for certain customers / services during the time of high congestion in the network

3GPP definition for QoS

In LTE Network QoS is implemented between UE and PDN Gateway and is applied to a set of bearers. 'Bearer' is basically a virtual concept and is a set of network configuration to provide special treatment to set of traffic e.g. VoIP packets are prioritized by network compared to web browser traffic.
In LTE, QoS is applied on Radio bearer, S1 bearer and S5/S8 bearer, collectively called as EPS bearer as shown in figure below.



In order to comprehend the concept of QoS , we must understand the bearer types and properties associated with each bearer through hierarchical chart as shown below. First there are two types of Bearer, i.e. Dedicated bearer and Default bearer. There is  at-least one default bearer established when UE is attached to LTE network while dedicated bearer is always established when there is need to provide QoS to specific service (like VoIP, video etc). Please go through the article Default and Dedicated Bearer which hopefully will help to explain the concept in more detail.



Dedicated bearer can be subdivided into Non-GBR and GBR types. 
GBR provides guaranteed bit rate and is associated with parameters like GBR and MBR
- GBR: The minimum guaranteed bit rate per EPS bearer. Specified independently for uplink and downlink
- MBR: The maximum guaranteed bit rate per EPS bearer. Specified independently for uplink and downlink

On the other hand, Non-GBR bearer does not provide guaranteed bit rate and has parameter like A- AMBR and UE- AMBR

- A-AMBR: APN Aggregate maximum bit rate is the maximum allowed total non-GBR throughput to specific APN. It is specified interdependently for uplink an downlink 
- UE -AMBR: UE Aggregate maximum bit rate is the maximum allowed total non-GBR throughput among all APN to a specific UE

As you can see, the default bearer can only be non-GBR type. Some other  important terms associated with each bearer type are discussed below:

- ARP: Allocation and retention priority is basically used for deciding whether new bearer modification or establishment request should be accepted considering the current resource situation.
- TFT: Traffic flow template is always associated with dedicated bearer and while default bearer may or may not have TFT. As mentioned earlier, dedicated bearer provides QoS to special service or application and TFT defines rules so that UE and Network knows which IP packet should be sent on particular dedicated bearer. It usually has rules on the basis of IP packet destination/source or protocol used.

L-EBI: It stands for Linked EPS bearer ID. As I discussed in previous article about dedicated and default bearer, we know that each dedicated bearer is always linked to one of default bearers. L-EBI tells Dedicated bearer which default bearer it is attached to. 

IP Address/ PDN: Each default bearer is attached to some PDN network and has its own IP address while dedicated bearer does not need this since it is linked to default bearer.

You can also see one other parameter associated with all bearers i.e. QoS class of identifier (QCI).This parameter basically defines IP level packets characteristics as shown below





EXAMPLE
Let me try to explain here again with the same example I gave in Default and Dedicated Bearer section

Usually LTE networks with VoLTE implementations have two default and one dedicated bearer

Default bearer 1: Used for signaling messages (sip signaling) related to IMS network. It uses qci 5
Dedicated bearer: Used for VoLTE VoIP traffic. It uses qci 1 and is linked to default bearer 1
Default bearer 2: Used for all other smartphone traffic (video, chat, email, browser etc), assuming qci 9 is used here



This means that Default bearer 1 is associated with IMS PDN and has specific IP address. It has throughput limitations defined in terms of A-AMBR and UE-AMBR. Since it has qci 5 which means that its IP packets has the highest priority over other IP packets and maximum delay as 100ms between UE and PGW with packet loss percentage up to 10-6

Default bearer 2 is associated with internet PDN and has specific IP. It has throughput limitations defined in terms of A-AMBR and UE-AMBR as well. Since it has qci 9 which means that its IP packets has the lowest priority over other IP packets and maximum delay possible as 300ms between UE and PGW with packet loss percentage up to 10-6

Dedicated bearer will be linked to Default bearer 1 with L-EBI and it also has TFT which basically defines which IP packets should be allowed to travel on this bearer. It has throughput limitations defined in terms of MBR and GBR. Since it is using QCI 1, the IP packets traveling on this bearer have the second highest priority. The maximum delay possible to IP packets on this bearer is 100 ms and the percentage of packet loss will be under 10-2